Rank-2 attractors and Deligne’s conjecture

نویسندگان

چکیده

In this paper, we will study the arithmetic geometry of rank-2 attractors, which are Calabi-Yau threefolds whose Hodge structures admit interesting splits. We develop methods to analyze algebraic de Rham cohomologies and illustrate how our work by focusing on an example in a recent paper Candelas, la Ossa, Elmi van Straten. look at connections between attractors string theory Deligne's conjecture special values $L$-functions. also formulate several open questions concerning potential number theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Maximal Rank Conjecture

Let C be a general curve of genus g, embedded in Pr via a general linear series of degree d. In this paper, we prove the Maximal Rank Conjecture, which determines the Hilbert function of C ⊂ Pr.

متن کامل

Rank Conjecture Revisited

The rank conjecture says that rank of an elliptic curve is one less the arithmetic complexity of the corresponding non-commutative torus. We prove the conjecture for elliptic curves E(K) over a number field K. As a corollary, one gets a simple estimate for the rank in terms of the length of period of a continued fraction attached to the E(K). As an illustration, we consider a family of elliptic...

متن کامل

Weil representation, Delignes sheaf, and proof of the Kurlberg-Rudnick rate conjecture

Let A 2 SL(2;Z) be the “Arnold’s cat map”(or any other hyperbolic element):

متن کامل

Toward a Theory of Rank One Attractors

Introduction 1 Statement of results PART I PREPARATION 2 Relevant results from one dimension 3 Tools for analyzing rank one maps PART II PHASE-SPACE DYNAMICS 4 Critical structure and orbits 5 Properties of orbits controlled by critical set 6 Identification of hyperbolic behavior: formal inductive procedure 7 Global geometry via monotone branches 8 Completion of induction 9 Construction of SRB m...

متن کامل

The Maximal Rank Conjecture and Rank Two Brill-Noether Theory

We describe applications of Koszul cohomology to the BrillNoether theory of rank 2 vector bundles. Among other things, we show that in every genus g > 10, there exist curves invalidating Mercat’s Conjecture for rank 2 bundles. On the other hand, we prove that Mercat’s Conjecture holds for general curves of bounded genus, and its failure locus is a Koszul divisor in the moduli space of curves. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep03(2021)150